在本文中,我们解决了诱导的半监督学习问题,旨在获取样本数据的标签预测。所提出的方法称为最优传输诱导(OTI),有效地将最佳的传输基于传输的转换算法(OTP)扩展到二进制和多级设置的归纳任务。在多个数据集上进行一系列实验,以便将所提出的方法与最先进的方法进行比较。实验证明了我们方法的有效性。我们将我们的代码公开使用(代码可供选择:https://github.com/mouradelhamri/oti)。
translated by 谷歌翻译
在本文中,我们提出了一种对无监督域适应的新方法,与最佳运输,学习概率措施和无监督学习的概念相关。所提出的方法Hot-DA基于最佳运输的分层制定,其利用了由地面度量捕获的几何信息,源和目标域中的结构信息更丰富的结构信息。通过根据其类标签将样本分组到结构中,本质地形成标记的源域中的附加信息。在探索未标记的目标域中的隐藏结构的同时,通过Wassersein BaryCenter的学习概率措施的问题,我们证明是等同于光谱聚类。具有可控复杂性的玩具数据集的实验和两个具有挑战性的视觉适应数据集显示了所提出的方法的优越性。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
神经算法推理的基石是解决算法任务的能力,尤其是以一种概括分布的方式。尽管近年来,该领域的方法学改进激增,但它们主要集中在建立专家模型上。专业模型能够学习仅执行一种算法或具有相同控制流骨干的算法的集合。相反,在这里,我们专注于构建通才神经算法学习者 - 单个图形神经网络处理器,能够学习执行各种算法,例如分类,搜索,动态编程,路径触发和几何学。我们利用CLRS基准来凭经验表明,就像在感知领域的最新成功一样,通才算法学习者可以通过“合并”知识来构建。也就是说,只要我们能够在单任务制度中学习很好地执行它们,就可以以多任务的方式有效地学习算法。在此激励的基础上,我们为CLR提供了一系列改进,对CLR的输入表示,培训制度和处理器体系结构,将平均单任务性能提高了20%以上。然后,我们进行了多任务学习者的彻底消融,以利用这些改进。我们的结果表明,一位通才学习者有效地结合了专家模型所捕获的知识。
translated by 谷歌翻译